If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-36=26
We move all terms to the left:
3x^2-36-(26)=0
We add all the numbers together, and all the variables
3x^2-62=0
a = 3; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·3·(-62)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{186}}{2*3}=\frac{0-2\sqrt{186}}{6} =-\frac{2\sqrt{186}}{6} =-\frac{\sqrt{186}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{186}}{2*3}=\frac{0+2\sqrt{186}}{6} =\frac{2\sqrt{186}}{6} =\frac{\sqrt{186}}{3} $
| X/2+2y=14 | | x°+90°+58.2=180° | | x°+90°+58.2°=180° | | 23(9h–3)=3h | | 2•3^(x+1)=54 | | (x-200)/400=0 | | 7n÷3=11 | | -3•k•-4=-36 | | 1.6=x/0.7+2.6 | | x+41/6=5 | | 11+0x=11 | | 34b=10 | | 6x=5x-20+x | | 6x=5x-20+x | | (x)=15(2)x | | (x)=15(2)x | | S=t-3t+2 | | S=t-3t+2 | | Y=2/5x+1/5 | | Y=2/5x+1/5 | | 36/b-30=0 | | 36/b-30=0 | | 36/b-30=0 | | 4=6y-106=2y+30 | | 3+12a=-31 | | 4=6y-106=2y+30 | | 4=6y-106=2y+30 | | 4=6y-106=2y+30 | | 3+12a=-31 | | 4=6y-106=2y+30 | | 4=6y-106=2y+30 | | 3+12a=-31 |